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From microbes to humans, habitat structural complexity plays a direct role in
the provision of physical living space, and increased complexity supports
higher biodiversity and ecosystem functioning across biomes. Coastal develop-
ment and the construction of artificial shorelines are altering natural landscapes
as humans seek socio-economic benefits and protection from coastal storms,
flooding and erosion. In this study, we evaluate how much structural complex-
ity is missing on artificial coastal structures compared to natural rocky
shorelines, across a range of spatial scales from 1 mm to 10 s of m, using
three remote sensing platforms (handheld camera, terrestrial laser scanner
and uncrewed aerial vehicles). Natural shorelines were typically more structu-
rally complex than artificial ones and offered greater variation between
locations. However, our results varied depending on the type of artificial struc-
ture and the scale at which complexity was measured. Seawalls were deficient
at all scales (approx. 20–40% less complex than natural shores), whereas rock
armour was deficient at the smallest and largest scales (approx. 20–50%).
Our findings reinforce concerns that hardening shorelines with artificial struc-
tures simplifies coastlines at organism-relevant scales. Furthermore, we offer
much-needed insight into how structures might be modified to more closely
capture the complexity of natural rocky shores that support biodiversity.

1. Introduction
For centuries, humans havemoved, hardened and steepened coastlines in order to
build settlements and exploit coastal resources [1,2]. This long-term trend of
coastal hardening continues unabated [3,4], usually via the construction of artifi-
cial structures including harbours, seawalls and breakwaters. Artificial shorelines
offer ecosystem services to humanity such as enhanced storm protection, access to
sustenance, transport links and recreation [2]. They can also provide new habitat,
shelter and substrate for marine organisms to colonize [5–7]. However, hard arti-
ficial structures built along coastlines can negatively impact habitats and species
through placement loss [8] and altered connectivity [9,10], and can facilitate the
spread of non-native species [11]. Furthermore, the biological communities
found on coastal structures are often different and of lower diversity than those
found along natural rocky coastlines [12–14].

One of the key mechanisms that may explain the lower biodiversity seen on
artificial coastlines is the general lack of structural (topographic) complexity
[14,15]. Structural complexity as a concept crosses the fields of remote sensing,
geology, geomorphology and mathematics. Here, we use it to refer to the local
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numeric variability of a surface. It is this form of physical sur-
face variation that is a key driver of community composition,
functioning and diversity across biomes by providing physical
spaces and shelter, and ameliorating strong environmental and
competitive pressures across a wide range of spatial and tem-
poral scales [16–19]. In intertidal rocky habitats, for example,
structural complexity generates habitat features such as cre-
vices, ridges and holes, which offer secure anchor points and
refuge from physical stressors and predation [20,21], allowing
a diversity of species to coexist under variable environmental
conditions. In essence, in the absence of structural complexity,
we must expect lower diversity and reduced ecological resili-
ence to negative community-altering extremes such as those
caused by human-induced climate change, extreme events
and non-native species [22–25].

Given the fundamental importance of structural complexity
in intertidal systems, there is growing focus on ecologically
inspiredengineeringdesign (commonly termed ‘eco-engineering’
or ‘greening the grey’) that aims to increase structural complexity
and thus the biodiversity value of artificial coastal structures
[26,27]. Such interventions include the addition or removal of
material to increase surface relief and create habitat-forming topo-
graphic features such as pits, rock pools, crevices and ridges [28–
30]. Although variouswider contextual factorsmay influence the
biological communities that can survive on structures (e.g. dis-
turbance [31] and water quality [32]), experimental evidence
suggests interventions that addstructural complexity can increase
the abundance and diversity of intertidal species [27] that in turn
may increase their aesthetic value [33]. There may be scenarios
where a lack of colonization is desirable on coastal structures
when ‘fouling’, particularly by non-native species, is considered
problematic [34]. Some surface textures can even be designed
specifically to reduce colonization [35]. Nevertheless, in scenarios
where it is desirable for artificial shorelines to provide surrogate
habitats for coastal biodiversity [36], it is vital that consideration
is given to enhancing their structural complexity to provide
niches for a wide range of species and size classes, to reduce bio-
diversity loss [37]. While it is generally accepted that artificial
structures are more structurally homogeneous than natural
rockyshores andprovide fewerniches, few studies have explicitly
quantified the deficit in complexity between artificial and natural
rocky habitats [13,15]. In order to effectively reduce the structural
deficit and improve biodiversity outcomes on coastal structures,
we need quantitative measurements over scales relevant to the
species that inhabit them and the environmental drivers that
shape their ecology and physiology [38,39].

In this study, we used multiple remote sensing method-
ologies to measure surface complexity for two common forms
of artificial structure (rock armour and seawalls) and contrasted
this with natural rocky shores. We captured fine-scale variation
(1–10 mm) via handheld structure-from-motion photography,
medium scale (10–50 cm) using a terrestrial laser scanner, and
large scale (1–10 m) with structure-from-motion photography
from an uncrewed aerial vehicle (UAV) platform. We hypoth-
esized that distinct scale-specific structural differences exist
between artificial structures and natural rocky shores, with natu-
ral shores providing a more structurally complex (i.e. overall
magnitude in variation) and structurally diverse (i.e. variability
in scales and types of structure) habitat across all scales. We pre-
sent detailed estimates of structural complexity, capturing
multiple organism-relevant scales and produce quantitative
insight into the specific deficits that arise from the artificial hard-
ening of the coastline.
2. Methods
(a) Study sites
We measured the structural complexity of intertidal substrate at
24 sites (12 artificial coastal structures and 12 natural rocky
shores) around the coast of Wales, United Kingdom (figure 1;
electronic supplementary material, table S1). Of the artificial struc-
tures, six were rock armour and six were near-vertical seawalls
(see examples in figures 1 and 2). For every artificial structure,
we surveyed a nearby natural rocky shore with similar seaward
aspect and wave exposure. All surveys were conducted during
the summer of 2018 on spring tides, within 2 h of low water.
(b) Quantifying substrate structural complexity
We used three remote sensing approaches to capture the three-
dimensional structural complexity of the artificial and natural
habitats at a range of spatial scales relevant to intertidal rocky
shore organisms (electronic supplementary material, table S2):
fine scale (1–10 mm), medium scale (10–50 cm) and large scale
(1–10 m). Within each site, a defined survey area of 120 m in
length parallel to the coast, and up to 50 m in width was centred
on the mid-shore region and delineated using a handheld GPS.

At the fine scale, three-dimensional structure was measured
using close range structure-from-motion photogrammetry. Ten
50 × 50 cm three-dimensional frames (with six control points to
scale and define a local coordinate system) were haphazardly
placed within each survey area. Frames were placed on near-
horizontal surfaces on rock armour and near-vertical surfaces
on seawalls; inclination was matched at the natural shore
sampled alongside each structure. In the centre of each frame,
we positioned a 25 × 25 cm quadrat and cleared the rock surface
of the biota using wire brushes, scrapers and cloths to reveal the
underlying surface. A total of 20 photographs were taken of each
inset quadrat, 16 in a 4 × 4 grid perpendicular to the surface, and
a further 4 at oblique angles from each corner. Using the 20
photographs, three-dimensional models were generated using
structure-from-motion software (Agisoft Photoscan [40,41]) and
scaled using the control points from the calibration frame allow-
ing for geospatial referencing with an average spatial error of
0.01 mm in all axes.

At themedium scale, site structurewasmeasured using terres-
trial laser scanning. A tripod-mounted Leica Geosystems HDS
ScanStation C10 terrestrial laser scanner was positioned at
between four and eight stations, depending on site geometry
and size, ensuring a full field of view (360° horizontal, 270° verti-
cal). Up to six spherical targets were distributed around the
survey area for spatial referencing, and scanner stationswere geor-
eferenced using dGPS with post-processed kinematic corrections.
The resulting point clouds had point spacing of 10 cm at 100 m
range, and an individual three-dimensional point precision of
6 mm at 50 m georeferenced in OSGB36 coordinates and elevation
relative to Ordnance Datum Newlyn.

At the large scale, structural complexity was measured using
structure-from-motion photogrammetry from aerial images.
UAV surveys were conducted at 21 of the 24 sites; two natural
and one artificial site (electronic supplementary material, table
S1) could not be surveyed due to weather, access and UAV
flight regulatory issues. At each site, at least three UAV missions
were completed. Flights were planned to ensure 80% frontal, side
and lateral overlap in images, typically from a height of 40 m
taken using a 36-megapixel Sony camera (full details outlined
in electronic supplementary material, table S3). As per the fine-
scale surveys, UAV images were processed with the same struc-
ture-from-motion software to reconstruct the three-dimensional
geometry at each site. Similar to the medium-scale survey, geo-
referencing was achieved using post-processed dGPS ground
control points to optimize the alignment of images and generate



Figure 1. Location of study sites, 12 artificial structures (rock armour and seawalls) and 12 natural rocky shores along the coastline of Wales, United Kingdom.
For further site details refer to electronic supplementary material, table S1.
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scaled georeferenced point clouds achieving an average root
mean square error of 41 mm per cloud. All UAV missions were
conducted within 1 h either side of spring low tides to capture
the maximum aerial exposure of the shorelines sampled.

(c) Data analysis
(i) Point cloud processing
The fine-, medium- and large-scale remote sensing methods gen-
erated three-dimensional geometries in the form of point clouds,
that were processed, and subsequently analysed using the open-
source software CloudCompare [42]. Fine-scale point clouds
were clipped to the extent of the cleared 25 × 25 cm central quad-
rat areas. Medium- and large-scale point clouds for each site were
clipped to the same survey area bounding polygon (120 × 50 m)
to ensure a consistent elevation band and region of data collected
across all three survey methods. Areas with soft sediment terrain
were removed as they did not contain the hard-substrate habitat
of interest to the study.

There are many ways to define structural or habitat complex-
ity. In this study, we calculated the average surface rugosity (the
standard deviation of the z-axis in a set two-dimensional (x, y)
space [43]) from all the point clouds of each site. Rugosity is
often defined as and is analogous to the ‘complexity of a surface’.
However, calculations of rugosity can be greatly affected by the
slope of a site (i.e. the overall angle of a surface; [44]). We compen-
sated for differing slopes by using rugosity perpendicular to the
local surface [43,45], enabling stronger comparison between sites
of variable shore inclination. We calculated the average perpen-
dicular rugosity for each site at 12 spatial scales. This was
achieved by incrementally increasing the size of the sampling
‘window’ used to sample the point clouds, between 1 mm (i.e.
1 × 1 mm windows) and 10 m (i.e. 10 × 10 m windows). The 12
windows for calculating rugosity were distributed across the
three categories of scale as follows: fine scale at 1, 5 and 10 mm
windows; medium scale at 10, 20, 30, 40 and 50 cm windows;
and large scale at 1, 2, 5 and 10 m windows.

The point clouds produced from the three remote sensing
methods exhibited some variance in point (observation) density
due to the nature of each sensor. To standardize point density
between the three methods and improve computing efficiency,
all point clouds were randomly thinned to ensure point
observations were no closer to each other than a tenth of the
smallest window of analysis, i.e. 0.1 mm for fine-scale point
clouds (min. window 1 × 1 mm), 1 cm for medium-scale
point clouds (min. window 10 × 10 cm) and 0.1 m for large-
scale point clouds (min. window 1 × 1 m). The mean and stan-
dard deviation of surface rugosity was then calculated per
point cloud for each window of resolution to capture within-
site average complexity and variability, and the variability
between sites. Examples of data outputs in the form of surface
rugosity models generated at different scales are shown in
figure 2.
(ii) Comparing structural complexity across scales
We used a non-parametric bootstrapping approach to determine
the median difference in mean surface rugosity between artificial
structures (rock armour or seawalls) and their comparative natural
rocky shores. We subsequently calculated the uncertainty (95%
confidence intervals) based on a total of 1000 bootstrap replicates.
Each bootstrap sample was generated via random selection with



Figure 2. Three-dimensional representations of samples of topography recorded from artificial coastal structures (rock armour and seawalls) and natural rocky shores
using the three remote sensing methodologies, measured across analysis window scales of 10 mm to 1 m and shown over areas from 25 cm2 to 30 m2.
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replacement for each of the 12 scales measured and consisted of
the pooled mean rugosities observed at each type of site (i.e.
rock armour, seawall or natural). Non-parametric bootstrapping
was selected to avoid assumptions regarding the distribution of
likely rugosity, unknown spatial dependence and differing
sampling size of the study sites [46–48]. Despite the lower
sample size at larger spatial scales (fine scale: 240 quadrats;
medium scale: 24 laser scans; large scale: 21 UAV flights), each
mean rugosity calculation was obtained from over 1 million
observations, providing confidence that the calculated values
accurately represented site-level surface rugosity. To compliment
the non-parametric bootstrap, we used permutation tests to for-
mally test for differences in the distributions of mean surface
rugosity between artificial structures and natural rocky shores
[49] across the 12 spatial scales using the ‘coin’ package in R [50].
(iii) Within- and between-site variability in structural complexity
Although discrete scales of analysis are easier to interpret, the
true surface complexity of a location is the product of complexity
measured across all observed scales. To capture this autocorrela-
tion and to compare and contrast the product of all 12 scales of
measured complexity between natural shores, rock armour and
seawalls, we used non-metric multidimensional scaling (nMDS)
based on Gower dissimilarities (as covariates crossed several
orders of magnitude and were heterogeneous) using the
‘vegan’ package in R [51]. We used the standard deviation of
complexity rather than the mean in order to compare the varia-
bility and predictability of complexity across scales between
sites. To assess significant differences between shoreline types,
we used the Hotelling’s T2 permutation test within the ‘Hotell-
ing’ package in R [52,53]. This permutational method does not
suffer from detection issues when there is high variance within
groups and specifically between sample sizes in multivariate
comparisons [54].
3. Results
The structural complexity of artificial structures was generally
lower than that of natural rocky shores (figure 3; electronic sup-
plementary material, table S4). At fine scales, the structural
complexity of both rock armour and seawalls was significantly
lower than natural shores at all scales (1 mm, 5 mm and
10 mm), with typically 17 to 29% less complexity (figure 3;
electronic supplementary material, table S4). At medium
scales, the differences in structural complexity between artifi-
cial and natural shores were more nuanced. Seawalls were up
to 41% less structurally complex than natural shores at all
scales (10, 20, 30, 40 and 50 cm). By contrast, the structural com-
plexity of rock armour wasmore similar to natural shores, with
the only significant difference occurring at the 50 cm scale
where rock armourwas 21%more complex (figure 3; electronic
supplementary material, table S4). At larger scales (1, 2, 5 and
10 m), there was higher variability in structural complexity
within shore types and fewer significant differences between
artificial and natural shores. Seawalls were 38 to 43% less



(a) (b) (c)

Figure 3. The difference in mean surface rugosity of rock armour (orange) and seawalls (grey) compared to the baseline of natural rocky shores (red dashed line) at
(a) fine, (b) medium and (c) large scales of measurement. Black dots represent the median difference in mean surface rugosity calculated from 1000 permutations
(resampling with replacement). Whiskers represent the upper and lower 95% confidence intervals. Violins plotting above or below the red line suggest the artificial
structures have higher or lower rugosity, respectively, than natural shores at each of the given scales (windows). Red crosses and stars indicate significant differences
between natural and rock armour, and natural and seawalls respectively (via permutation testing at p < 0.05, see electronic supplementary material, table S4).
Suggested ecological relevance of different scales is illustrated along the bottom of the x-axis (see electronic supplementary material, table S2 for evidence to
support ecological relevance).
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complex than natural shores at 5 and 10 m scales, and rock
armourwas almost 50% less complex at the 10 m scale (figure 3;
electronic supplementary material, table S4).

The mean site-level variability of rock armour structural
complexity was similar to that of natural shores at two of the
three fine scales (1–5 mm), higher than natural shores at three
of the five medium scales (30–50 cm) and notably lower than
natural shores at three of the four largest scales studied
(2–10 m) and the 10 mm scale (figure 4a). Mean site-level varia-
bility was lower for seawalls than natural shores at all scales,
although more so at the finest (1–10 mm) and largest (5–10 m)
scales. The site-level overall variability/predictability (rep-
resented by the width of the confidence intervals) in rock
armour and seawall structural complexity was similar to that
of natural rocky shores at fine and medium scales but was con-
siderably lower at the larger scales (1–10 m), especially among
rock armour structures.When visualizing all 12 scales of surface
rugosity simultaneously, there was some overlap between rock
armour structures and natural rocky shores, but thesewere stat-
istically dissimilar in multiscale complexity (T2 = 0.277, p <
0.05). Seawalls were visually and statistically dissimilar from
both natural (T2 = 1.21, p < 0.05) and rock armour surfaces
(T2 =−0.72, p < 0.05) (figure 4b). Natural shores were also
characterized by a more diverse range of site-level rugosities,
whereas artificial rock armour and seawalls had more spatially
homogeneous structural complexity (figure 4b).

4. Discussion
As coastlines are developed and artificial structures proliferate,
there will be a substantial simplification of structural complex-
ity in coastal habitats over multiple spatial scales. The artificial
shoreline structures we surveyed were typically less structu-
rally complex than analogous natural rocky shorelines, but
results varied depending on the type of artificial structure
and the scale at which complexity was measured. Seawalls
were typically approximately 20–40% less complex than natu-
ral shorelines at all scales, while rock armour structures were
only deficient at the smallest and largest scales measured
(approx. 20–50% less complex), butwere similar toormorecom-
plex thannatural shores atmediumscales. Both types of artificial
structures exhibited high structural similarity between locations,
predictably failing to deliver the variation inherent in natural
shorelines. While numerous studies have demonstrated that



(a) (b)

Figure 4. (a) Variability (standard deviation) in surface rugosity across scales recorded on natural rocky shores and artificial coastal structures (rock armour and seawalls)
around Wales, UK. Solid lines represent the mean site-level variability (50th percentile) and shaded areas indicate the 95th and 5th percentiles. The distribution of
variability recorded on natural shores is semi-transparently underlain with those recorded on artificial structures for comparison. (b) nMDS ordination, based on Gower
dissimilarities, of variation in multiscale surface rugosity between rock armour (orange squares), seawalls (grey triangles) and natural rocky shores (green circles).
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structural eco-engineering interventions on artificial structures
can enhance their biodiversity value, either by increasing surface
relief or creating habitat-scale features [26,27], a quantitative
understanding of the scales at which these interventions are
most needed was lacking. Our study identifies the specific
scales and amount of structural complexity that is deficient
in current rock armourand seawall structure designswhen com-
pared tonatural shorelines andwill inform targeted intervention
to reduce the multiscale deficit in topographic complexity
between artificial and natural rocky shorelines.
(a) Potential ecological consequences of multiscale
deficits in structural complexity

No matter how we view biodiversity, as intrinsically valuable
or as central to humanwellbeing and services [55–57], locations
with high biodiversity are beneficial to humans and the
planet alike [58,59]. With biologically diverse ecosystems at
risk globally, there has been an increase in the development
of binding targets for their maintenance, protection and
restoration. However, for many ecosystems, our mechanistic
understanding of how to achieve these targets is lacking [60].
Duarte et al. [37] proposed that restoring the three-dimensional
complexity of benthic ecosystems should be key to our global
efforts to rebuild marine life. In our study, artificial habitats
provided a less structurally complex environment that affords
less physical space for species colonization, and by extension,
narrower niches and fewer microhabitats than natural habitats,
a phenomenon not restricted to the coastal environment
[61–63]. Such simplification should be of concern due to the
explicit linkages between topography, ecological processes
and the potential for altered biodiversity patterns [38,64].
Like many before it, our study was predicated upon the
central theory that structural complexity is one of the key pro-
cesses driving biological diversity [65]. Natural structural
complexity in the intertidal zone originates through a complex
interaction between land geology and the physical forces of the
oceans and organisms that act over varying time scales, giving
rise to high levels of spatial and temporal heterogeneity. By
contrast, artificial structures are created from engineered
materials selected for resilience, with designs optimized for
coastal protection, or at least to resist erosion and weathering
so that they may continue functioning as intended with mini-
mal maintenance requirements. As a result, artificial and
natural coastlines represent vastly different environments for
organisms. For example, we found that structural features of
approximately 1 mm to 1 cm were typically deficient on both
rock armour and seawall surfaces. Substrate features at this
small scale are known to promote settlement by intertidal
organisms, such as barnacles, on natural shorelines [66]. Settled
barnacles themselves then create biological structural complex-
ity from their tests that restrict limpet foraging, leading to
the reduced top-down control of competitive macroalgae,
increased recruitment and growth of mussel beds that in turn
reduce thermal pressure and enhance the stability of this
community [67–69]. Larger cm- and m-scale complexity
would similarly influence niche availability for larger bodied
organisms by increasing variation in the carrying capacity of
shelters from environmental stressors and predation [70].

(b) Embedding multiscale structural complexity in
engineering

Environmental managers, designers and engineers taskedwith
developing new infrastructure or retrofitting existing structures
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to increase structural complexity for biodiversity enhancement
face a challenge. They must balance the usual considerations of
cost, engineering and social and environmental impact assess-
ment, while also building-in space in their design envelope
for habitat provision [71]. With this balancing act becoming
increasingly complex, incorporation of multiscale structural
complexity and environmentally sensitive design may be
vital formeeting biodiversity targets in the coastal environment
[37,72]. Our results highlight the specific scales at which artifi-
cial structures are particularly deficient in structural complexity
compared to natural shores, and which could be the focus of
future targeted interventions. Seawalls were found to be
deficient at all scales by approximately 20–40%, while rock
armour structures were most deficient at the finest and
largest scales (i.e. approximately 20–30% at the mm scale
and approximately 40–50% at the 5–10 m scale).

Currently available retrofit or ‘bolt-on’ eco-engineering
designs provide a means of modifying existing structures
where deficits in structural complexity were not considered
during construction. These are often designed to resemble
small- to medium-scale (i.e. cm-scale) habitat features found
in natural habitats [27]. For example, drilled or cast pits,
grooves and ridges tend to be 1–10 cm in depth, width or
height [29,73], while drilled, cast or bolt-on rock pools and
holes tend to be 10–50 cm in depth or width [74–76]. Bolt-on
rock pool units, by default, add to surface rugosity while sim-
ultaneously providing water-retaining refuges. Our results
indicate that interventions at these scales can improve the
provision of structural complexity on artificial structures, par-
ticularly on seawalls where complexity at these scales was
consistently deficient. Such interventions are not thought to
impact structural integrity [71]. Furthermore, flume exper-
iments have shown that adding topographical complexity to
plain seawalls to mimic bolt-on designs can reduce wave
overtopping, thus improving their engineering function [77].

Although rock armour was not found to be deficient at
medium scales, this does not mean that interventions at this
scale are not necessary or valuable for rock armour structures.
The high level of complexity in rock armour at the 50 cm to 1 m
scale, in particular, reflected the regular rise and fall of uni-
formly sized and shaped boulders. The void space between
boulders may well provide useful habitat [78] but uniform
niches that are similar across all rock armour structures will
not provide the within or between-site heterogeneity inherent
to natural habitats. Furthermore, although water may be
retained in sandy recesses between rock armour [79], these
do not provide true rock pool habitat [13]. The ecological role
played by structural complexity in all studied habitats is clearly
more nuanced than the purely objective three-dimensional
rugosity measurements we used in this study.

Finer-scale (mm-scale) and larger-scale (m-scale) structural
eco-engineering interventions have also been trialled exper-
imentally. Millimetre-scale surface texture can be achieved
through material choice [80] or by treating concrete surfaces
as they set [16,81]. Metre-scale pre-cast habitat units can be
installed in or on structures in the form of blocks or panels
[30,73,82]. Interventions at these fine and large scales would
be most effective if they were integrated within structures
from the outset, rather than bolted-on retrospectively. The lar-
gest example of singular coastal eco-engineering intervention
units we are aware of are approximately 1.25 m3 BIOBLOCKS
[73]. This design creates metre-scale variation in topography
due to its size, as well as incorporating smaller multiscale
surface variability that leads to higher species richness than sur-
rounding artificial substrate [73]. Our results suggest that
structural complexity remains deficient at scales even larger
than those provided by BIOBLOCKS (i.e. greater than or
equal to 5 m). Some coastal protection systems comprise mod-
ular components at these larger scales (approximately 3 to
5 m [83,84]) and may be readily modified with structural com-
plexity enhancements using specialized formliners or moulds
[85]. It may also be possible to make the overall footprint of
structures more variable from the outset to increase complexity
at these largest scales (i.e. using nonlinear designs), but design
modifications at this scale are likely to be driven by cost and
engineering requirements and often fall outside the potential
remit of eco-engineering approaches. Care should be taken
withmodifications at a large scale as thismay result in increased
physical footprint of structures and increased environmental
impact associated with such changes. Nevertheless, solutions
combining large-scale units with medium-scale habitat features
(e.g. rock pools) and fine-scale surfacemanipulation (e.g. texture
or grooves) could provide multiscale structural complexities
similar to that of natural shorelines, without increasing structure
footprints or compromising their engineering function. Further-
more, directly replicating the full fingerprint of natural reef
topography at a variety of spatial scales offers a novel approach
to capture a mosaic of structural features that interact to support
biodiversity in natural habitats [85].
5. Conclusion
We found that the current designs of seawalls and rock
amour that are widespread on many developed coastlines
provide a poor analogue for natural rocky shorelines in
terms of their provision of multiscale structural complexity.
Ecologically and in the face of increasing environmental
pressures, this lack of complexity represents a considerable
deficit in terms of niche provision and is likely to contribute
substantially to the lower levels of biodiversity found on arti-
ficial structures. From an engineering perspective, there is
strong evidence that there is scope for incorporating multi-
scale surface complexity into the construction of artificial
structures with the explicit aim to improve biodiversity out-
comes in the next generation of ecologically sensitive design.
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