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Abstract

Coastal urbanisation, energy extraction, food production, shipping and transportation have led to the global prolif-
eration of artificial structures within the coastal and marine environments (sensu “ocean sprawl”), with subsequent
loss of natural habitats and biodiversity. To mitigate and compensate impacts of ocean sprawl, the practice of eco-
engineering of artificial structures has been developed over the past decade. Eco-engineering aims to create sustain-
able ecosystems that integrate human society with the natural environment for the benefit of both. The science of
eco-engineering has grown markedly, yet synthesis of research into a user-friendly and practitioner-focused format is
lacking. Feedback from stakeholders has repeatedly stated that a “photo user guide” or “manual” covering the range
of eco-engineering options available for artificial structures would be beneficial. However, a detailed and structured
“user guide” for eco-engineering in coastal and marine environments is not yet possible; therefore we present an
accessible review and catalogue of trialled eco-engineering options and a summary of guidance for a range of
different structures tailored for stakeholders and end-users as the first step towards a structured manual. This work
can thus serve as a potential template for future eco-engineering guides. Here we provide suggestions for potential
eco-engineering designs to enhance biodiversity and ecosystem functioning and services of coastal artificial structures
with the following structures covered: (1) rock revetment, breakwaters and groynes composed of armour stones or
concrete units; (2) vertical and sloping seawalls; (3) over-water structures (i.e., piers) and associated support struc-
tures; and (4) tidal river walls.
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Introduction

Coastlines worldwide are becoming increasingly vulnerable
to flooding, erosion and degradation due to rising sea level,
stormier seas and increased coastal urbanisation (McGranahan
et al. 2007; Halpern et al. 2008; Tessler et al. 2015). The
human population within 100 km of the coastline is
disproportionally higher compared to inland areas (Small
and Nicholls 2003; McGranahan et al. 2007), with much of
this population concentrated in densely packed urban areas
(Firth et al. 2016a; Todd et al. 2019). Consequently, coastlines
globally have been developed to support human activity,
resulting in the drastic and irreversible modification of natural
systems (Vitousek et al. 1997; Halpern et al. 2008; Knights
etal. 2015). Human activities focused along the coast, such as
shipping and transportation, residential and commercial devel-
opment, as well as the creation of hard artificial defence struc-
tures (i.e., seawalls, breakwaters, groynes) to protect valuable
urban infrastructure (i.e., utilities, roads, buildings) from rising
and stormier seas, have contributed to “ocean sprawl.” Ocean
sprawl (sensu Duarte et al. 2012) describes the proliferation of
artificial structures in marine and coastal environments, and
the subsequent modification and loss of natural substrata
(Duarte et al. 2012; Firth et al. 2016a; Bishop et al. 2017;
Heery et al. 2017). For example, 14% of coastal United
States is composed of hard urban structures (Popkin 2015),
10% of the Great Barrier Reef World Heritage Area in
Australia is armoured (Waltham and Sheaves 2015) and
60% of the natural coastline in China has been replaced by
seawalls (Ma et al. 2014).

Urban infrastructure alters the physical, chemical and bio-
logical environment of the receiving ecosystem (Dugan et al.
2011; Firth et al. 2016a; Todd et al. 2019). Hard artificial
defence structures (hereafter ‘artificial structures’) directly re-
place natural habitats (Airoldi and Beck 2007; Govarets and
Lauwaert 2009), resulting in habitat fragmentation (Krauss
et al. 2010) and disruption of ecological connectivity (Firth
et al. 2016a; Bishop et al. 2017). Additionally, urban infra-
structure changes the geomorphology and hydrodynamics of
the surrounding habitats (Dugan et al. 2008; Nordstrom
2014). For example, in sandy bottom habitats, artificial struc-
tures alter normal wave activity and subsequently affect
longshore transport and sediment deposition, modifying the
morphology of the coastline (Dugan et al. 2011; Del Rio et al.
2013; Nordstrom 2014). Impermeable surfaces that are a com-
mon feature of urban systems, such as roads and buildings,
increase runoff into the adjacent body of water (Arnold Jr and
Gibbons 1996; Barnes et al. 2001), often facilitating increased
input of nutrients and pollutants (e.g., agricultural fertilizers,
heavy metals; Arnold Jr and Gibbons 1996; Wicke et al.
2012). Fewer organisms in terms of numbers and abundances
of'species (i.e., biodiversity) colonise coastal urban infrastruc-
ture compared to natural habitats in similar environmental
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settings (Connell 2001; Bulleri and Chapman 2004;
Moschella et al. 2005; Lai et al. 2018). This is attributed to
the steep profiles and reduced surface area and topographic
complexity of urban artificial structures (Knott et al. 2004;
Moschella et al. 2005; Chapman and Underwood 2011; Lai
et al. 2018). Many artificial structures are dominated by inva-
sive species (organisms that are not native to the ecosystem)
and opportunistic species (organisms that make up the initial
stages of succession) compared to natural habitats (Glasby
et al. 2007; Dafforn et al. 2009, 2012). As a result, the eco-
logical functioning (i.e., biotic processes such as water filtra-
tion and primary productivity) of artificial structures is often
different to comparable natural habitats (Mayer-Pinto et al.
2018a; b). Changes in ecological functioning can have detri-
mental knock-on effects on the provision of ‘ecosystem ser-
vices’ — desirable secondary benefits to both society and na-
ture, such as improvement in water quality, increase in carbon
sequestration and more space for outdoor recreational activi-
ties (Fig. 1).

Regardless of the specific ecological impacts, it is clear that
human actions are leading to the development of new habitats
and ecosystems without natural analogues (‘novel ecosys-
tems’; Hobbs et al. 2006; Morse et al. 2014). In response,
some ecologists are considering how to manage these new

Artificial structures are typically characterised by depauperate
communities often dominated by opportunistic & invasive species
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Fig. 1 Typical characteristics of artificial structures and how eco-
engineering optimises the potential ecosystem services as outlined by
the Millennium Ecosystem Assessment (red boxes) (Millennium
Ecosystem Assessment 2005; Everard 2017). The arrows show the po-
tential linkages and feedbacks between services (e.g., improved fisheries
[provisioning service] can have beneficial knock-on effects to recreational
fishing and tourism [cultural service]). Other potential desirable outcomes
of eco-engineering are highlighted in black boxes. *Eco-engineering en-
hances biodiversity and ecosystem services only compared to the ecolog-
ical condition of the same structure without eco-engineering applications
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habitats for ecological and societal benefit (Milton 2003;
Hobbs et al. 2006; Macdonald and King 2018). The design
of such ecosystems, which integrate human society with the
natural environment for the benefit of both, has been labelled
ecological engineering (or “eco-engineering”’; Odum 1962;
Mitsch and Jorgensen 1989; Odum and Odum 2003). Whilst
the environmental context of artificial structures is likely to be
fixed (e.g., tidal position, geographic position), their associat-
ed biodiversity (i.e., the variety of living organisms; Colwell
2009) and role in ecological functioning can be enhanced
through eco-engineering techniques.

The field of eco-engineering is beginning to provide prac-
titioners, developers, managers and decision makers with op-
tions for the design and management of artificial structures in
the coastal and estuarine environments to support biodiversity
and provide desirable ecosystem services (Fig. 1) whilst not
compromising the primary function of a structure (e.g., coastal
defence, safe berthing in a port). As coastal urbanisation in-
tensifies, the pressure on coastal developers to incorporate
ecologically sensitive designs will undoubtedly increase.
Recently, there has been increasing impetus among stake-
holders for eco-engineering of artificial structures to support
ecosystem services. Evans et al. (2017) interviewed different
stakeholder groups about their perceptions of artificial coastal
defence structures and their potential to provide built-in sec-
ondary benefits. Respondents prioritised ecological benefits
over economic, social and technical ones. At the same time,
stakeholders have raised concerns relating to the impacts of
eco-engineering interventions; engineers are concerned with
impacts on the performance and durability of the structure
whilst conservationists are concerned about invasive species
(Dafforn et al. 2012; Evans et al. 2017; Naylor et al. 2017).
Research has shown that the encouragement of certain
colonising organisms such as barnacles, mussels, oysters and
algae can have a positive “bioprotective effect” through phys-
ical strengthening of the materials and protection from tem-
perature extremes and wave action (Risinger 2012; Coombes
et al. 2013; Coombes et al. 2015). Furthermore, one of the
primary functions of eco-engineering is to promote diverse
native biological communities that can prevent the establish-
ment of invasive species (Stachowicz et al. 1999; Stachowicz
et al. 2002; Arenas et al. 2006b; Fig. 1).

Whilst efforts should be focused on maximising ecological
benefits through eco-engineering of artificial structures, the
best option is to allow natural biogenic habitats and defences
to persist where possible and avoid building artificial struc-
tures unless absolutely necessary — the “do nothing” approach
(Hoggart et al. 2014). Where and when human intervention is
needed for reasons of public safety, infrastructure protection
or energy development, the use of “soft” engineering ap-
proaches should be prioritised if possible (Dafforn et al.
2015a; Morris et al. 2018a). These interventions typically in-
volve working with nature, such as the modification or

removal of artificial structures to allow the sea to re-inundate
previously reclaimed land (commonly called “managed re-
alignment”; French 2006; Masselink et al. 2017; Mayer-
Pinto et al. 2017), or using vegetation, sand-fills and sand
nourishment as coastal protection (Stive et al. 2013; Hanley
et al. 2014; Morris et al. 2018a). Where these soft designs are
not possible, a combination of hard and soft techniques, such
as “hybrid stabilisation” and “living shorelines” approaches,
should be considered (Bilkovic and Mitchell 2013; Sutton-
Grier et al. 2015; Polk and Eulie 2018). Quite often in
urbanised areas, however, the only feasible approach is to
build hard structures due to lack of space and the immediate
need to protect valuable urban infrastructure (Chee et al.
2017). In this paper, we assume that the reader has already
explored and rejected soft engineering options, leading to an
informed decision to move forward with necessary eco-
engineering of hard structures to provide secondary functional
benefits.

Feedback from stakeholders and end-users has repeat-
edly informed us that a “photo user guide” or “manual”
covering the range of eco-engineering options available
would be much easier than having to sift through the rap-
idly expanding body of academic literature (see Dafforn
et al. 2015a; Geist and Hawkins 2016; Mayer-Pinto et al.
2017 for reviews). It is increasingly accepted that one role
of scientists and engineers is to inform coastal managers
and government bodies of current research (Chapman and
Underwood 2011; Evans et al. 2017). Thus, structured
guides and frameworks (e.g., Mayer-Pinto et al. 2017,
Naylor et al. 2017) tailored for decision-makers will be-
come essential for eco-engineering to progress.
Therefore, in this paper, we provide a user-friendly, illus-
trated review of trialled eco-engineering options and a
summary of potential guidance for a range of different
artificial structures for practitioners involved in the devel-
opment of coastal environments. This work can thus serve
as a template or model for future eco-engineering guides
and frameworks that should evolve in tandem with emerg-
ing proof-of-concept evidence. Here, various types of
structures are considered in turn, with guidance given on
appropriate eco-engineering interventions (Supplementary
Information Tables 1—4), and generic and contextual con-
siderations on application of eco-engineering designs are
discussed.

Methods
Literature search
Using literature identified by Strain et al. (2017a) as a

foundation and supplemented with subsequent searches
for scientific articles, conference papers and government
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reports, we reviewed studies and projects on eco-
engineering interventions in coastal, estuarine and tidal
river systems from around the world that included measur-
able ecological outcomes (e.g., biodiversity, ecosystem
services). We focussed only on measurable ecological ef-
fects because the vast majority of eco-engineering studies
measured only these outcomes, although social, cultural
and economic knock-on effects are expected (Fig. 1;
Airoldi et al. 2005). Results from the literature search are
displayed in Table 1 as intervention types for each category
of artificial structure, including the number of studies that
has tested each intervention (as a proxy for evidence base).
We then selected studies from the literature search that we
felt represented the range of options for the most common
types of structures and presented these as separate tables
for each type in a visual framework included in the
Supplementary Information (see below for descriptions of
structures). Information for each selected study includes
design details, intended outcomes, success, photographs,

Table1 Summary of eco-engineering intervention studies reviewed for
each artificial structure type. Interventions are described below and ex-
amples are provided in Supplementary Information Tables 1-4. Studies

habitats, key references and associated costs (if known).
It is important to note that the cost of interventions was
not scaled up or standardised across all studies presented.
We included as much consistent information from these
studies as possible, but only used information derived from
the authors’ original interpretations.

What structures are covered?

We considered a range of coastal and estuarine structures:
(1) Rock revetment, breakwaters and groynes include
structures perpendicular and parallel to the shore com-
posed of armour stones or concrete units, which are typi-
cally sloping structures that function to retain land, shelter
a coastal area from incident waves or dissipate wave ener-
gy. (2) Vertical and sloping seawalls are solid, protective
structures, including harbour walls and docks, designed to
retain land and reflect wave energy. (3) Over-water
structures include bridges and piers (and their supportive

reviewed only include projects with measurable ecological objectives
published in grey and academic literature

Artificial structure type

Eco-engineering intervention No. of studies

Rock revetment, breakwaters and groynes made of armour stones or concrete units Hybrid stabilisation 20

(see SI Table 1)

Vertical and sloping seawalls
(see SI Table 2)

Over-water structures
(see SI Table 3)

Pier pilings
(see SI Table 3)

Tidal river walls
(see SI Table 4)

Floating pontoons

Pits, holes, crevices, grooves, cuts, roughness, gaps
Precast habitat enhancement units
Rock/tidal pools

Seeded, textured or complex tiles or panels
Transplant target species

Addition of natural material

Gabion baskets

Hybrid stabilisation

Modifying seawall slope or seawall removal
Pits, holes, crevices, grooves, cuts, roughness, gaps
Rock/tidal pools

Seeded, textured or complex tiles or panels
Transplant target species

Light-penetrating designs

Seeded, textured or complex tiles or panels
Addition of synthetic material

Precast habitat enhancement units

Seeded, textured or complex tiles or panels
Transplant target species

Addition of natural material

Floating island habitats

Timber fenders & ledges

Wall boxes

Addition of synthetic material

[ e S I e AS TR B OO B SR N B R, B VS B RV R o) |

Seeded, textured or complex tiles or panels
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pilings). (4) Tidal river walls are typically vertical or slop-
ing structures that provide flood defence and erosion mit-
igation where riverine freshwater meets the sea. (5)
Vulnerable, degraded and culturally valuable structures
include structures that are not permitted to be manipulated
because of cultural or heritage value, or because of their
state of deterioration. (6) Floating pontoons (or floating
docks) are hollow structures used as walkways and for
docking boats, most often within marinas. All the studies
reviewed consisted of interventions made to existing struc-
tures or incorporated within structures during their con-
struction. We do not describe nearshore or offshore artifi-
cial reefs as habitat for fisheries, as well as eco-engineering
of the upper reaches of rivers because comprehensive re-
views on these subjects exist (e.g., Nakamura 1985; Baine
2001; Palmer et al. 2005; Radspinner et al. 2010; Lokesha
etal. 2013; Lima et al. 2019) and these habitats fall outside
the remit of this paper.

How to use this guide

Caveat: We caution that the options outlined in this guide
should be used responsibly; they should not be used to influ-
ence the consenting process for harmful coastal
developments.

Whilst secondary management goals (e.g., enhance bio-
diversity, increase water filtration) for any eco-engineering
design should be clearly defined at the outset, we appreciate
that managers may not be aware of the range of potential
interventions (see Evans et al. (2017) for a list of potential
secondary benefits of designing multi-functional
engineered structures suggested by a group of stake-
holders). Consequently, we present a step-by-step approach
that will direct the user to relevant information and help
guide them through the range of eco-engineering options
that are currently available.

Step 1. Refer to Fig. 2 which illustrates a series of questions
that managers should consider in relation to incorpo-
rating eco-engineering into a planned development.
The user should move through the questions sequen-
tially, although some questions may not be applica-
ble in every case.

Refer to the appropriate section and table. Figure 2
directs users to the appropriate section (in-text) and
table (Supplementary Information) containing infor-
mation from previous studies for the particular struc-
ture type that they are working with. It is important
to note that some enhancement designs may be ap-
plicable to structure types across multiple groups.
Step 3. Refer to Table 2 which details additional generic

considerations that may be applicable.

Step 2.

Decision has been made to build, modify or remove a structure, then consider:

1. Has there been consultation with local government &
stakeholders? 04

This may be advisable depending on the scope & scale of
the intervention, especially if it is in a public space.

2. Is an Environmental Impact Assessment (EIA) or similar
necessary? o0

Consult appropriate local planning authorities. Large scale

&those in pr
to require planning approval.

are likely

3. Is a licence required for the work? ce¢

Licences are often required for reasons of safety or
ial to the envir . Apply via the
relevant agency.

4. Have ecological surveys been conducted/is water quality
monitoring in place? ®

Consider initiatinga ing scheme or
public records. Any eco-engineering efforts may be
hampered by poor water quality.

5. What are the secondary management goals? ce

Review current data or conduct baseline surveys.
Maintaining the status quo may be the desirable outcome.

6. Has the method of measuring “success” been identified? ce

“Success” will depend on secondary management goals.

7. Will maintenance work affect the efficacy of the
interventions? ce

Where ibl hedul work around
ecologically sensitive seasons.

8. What type of structure are you intending to build, modify or
remove? o

- N
Rock revetment, Over-water __ dal ri
groynes, [ Seawalls | structures, [ e ;a:;:er | Vulnerable Floating
breakwaters Sl Table 2 pier pilings S TEbIEY structures pontoons
SiTable 1 SiTable 3 )
2 4

Fig. 2 Considerations for developers and managers relating to eco-
engineering decisions for coastal and marine artificial structures.
Question #8 prompts the user to choose the structure type of interest
and refer to the associated section (in-text) and table (Supplementary
Information) for design details and examples. Symbols represent different
consideration types: o Engineering, ® Environmental, ¢ Governmental, ¢
Societal

Eco-engineering of different artificial structures

Much progress has been made in the field of eco-engineer-
ing, and a wide range of options is emerging, which are
provided within this paper. We strongly caution, however,
that many designs have only been trialled once, or only
under certain environmental conditions or regions (i.e.,
temperate regions), and so it is unknown whether the same
results would emerge under different environmental
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Table 2

Checklist for additional generic considerations that may be applicable to the chosen eco-engineering intervention

Considerations

References

Mlmplementation
Implementation of design can be during construction or retrofitted

- During construction: Designs may be covered by the licence for the construction work, be more
creative, less expensive & implemented on a larger scale than if fitted retrospectively
- Retrofitting existing structures: Cost-effective options are available, such as affixing additional

material, drilling pits, grooves & pools & transplanting desirable habitats or species
MMaterials
Geological origin of material used can affect colonising communities, therefore try to:
- Use material local to the region
- Use eco-friendly or natural material
- Use cement replacements (e.g., ground granulated blast-furnace slag)
MPlacement
Performance of eco-engineering designs may be influenced by:
- Immersion gradient
Subtidal & lower intertidal: Placement of interventions here yields markedly
greater biodiversity as this area is immersed on every tidal cycle & the
potential pool of colonising species is greater; however the risk of sand scour
is greater, which may result in loss of the intervention
Middle & high intertidal: Placement of interventions here may help extend the
area of suitable habitat, which is normally compressed & greatly reduced
compared to the intertidal zone in natural rocky shore
- Exposure gradient
Sheltered sites: Design may becoming inundated with sediment
Exposed sites: Design may be lost to currents & waves
- Aspect
Directionality (north vs. south in particular) determines the magnitude
of shading & thermal stress a structure receives
- Inclination
Substrate slope may determine the colonising community, as survivability
on horizontal vs. vertical substrate is species-specific & thus might
influence success of invasive species
mTiming of installation
Timing of installation of eco-engineering interventions is important, as recruitment periods
of marine life & subsequent community development vary throughout the year
MMaintenance of structure
Maintenance can result in disturbance, often creating bare space where dense biological
assemblages occurred previously, increasing the risk of colonisation by invasive species
E Uncontrollable factors
The precise effects of eco-engineering interventions are difficult to predict because coastal
& marine systems are highly variable, with many uncontrollable conditions
- Local conditions: Consider the success of past designs in similar locations & conditions
- Extreme weather events: Use information on weather trends in the region
- Obtaining permissions to install a design: Many structural design features of artificial
structures are non-negotiable because of their primary function & cost restrictions

Firth et al. 2014b; Sella & Perkol-Finkel 2015
Browne & Chapman 2011; Perkol-Finkel et al.

2012; Evans et al. 2016; Strain et al. 2017b

Burcharth & Lamberti 2007; Green et al. 2012
ECOncrete Inc; Dennis et al. 2017
McManus et al. 2017

Browne & Chapman 2011; Firth et al. 2016a

Perkol-Finkel & Sella 2015

Evans et al. 2016; Firth et al. 2016a
Francis et al. 2008; Browne & Chapman 2014

Chapman & Blockley 2009
Chapman & Underwood 2011

Francis & Hoggart 2008; Dafforn et al. 2012

Airoldi & Bulleri 2011; Evans 2016

Stachowicz et al. 1999; Airoldi & Bulleri 2011

conditions. This is a major limitation in this field; we ac-
knowledge that more evidence is needed before most eco-
engineering designs can become routine practice (Evans
et al. 2019). There are, however, examples showing that
rigorous testing in a variety of different geographic and
environmental settings can lead to large-scale implementa-
tion (see World Harbour Project 2018; ECOncrete Inc.
2019; Ecostructure 2019; Living Seawalls 2019). Thus,
when choosing an eco-engineering intervention, it is vital
to consider all physical (e.g., wave action, storm frequency,
sediment loading, turbidity), chemical (e.g., salinity

@ Springer

regime, nutrient supply, pollution loading) and biological
factors (e.g., pool of potential colonising species, larval
supply, proximity to point of introduction of invasive spe-
cies). Moreover, it is crucial that developers and engineers
engage with local ecologists, oceanographers and experts
to discuss the feasibility of options so that valuable re-
sources are not wasted, and the outcomes of eco-
engineering installations maximised. In this light, any trials
that failed to meet their ecological goals should be reported
and considered when designs in new areas are being
planned.
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Rock revetment, breakwaters and groynes made
of armour stones or concrete units (supplementary
information Table 1)

There are many options for eco-engineering these structures.
Small-scale physical modifications involve drilling pits and
rock pools (Firth et al. 2014; Evans et al. 2016; Hall et al.
2018). Large-scale physical interventions involve placement
of precast habitat-enhancement units within the existing struc-
ture or during construction (Firth et al. 2014; Perkol-Finkel
and Sella 2015; Sella and Perkol-Finkel 2015). Biological
modifications include transplanting target species to the struc-
ture for habitat enhancement or conservation purposes
(Perkol-Finkel et al. 2012). Hybrid methods consist of com-
bining planted vegetation (e.g., saltmarsh cordgrass, man-
grove trees) or reef-forming animals (e.g., oysters, coral) with
built structures to mitigate erosion and rehabilitate coastal
habitat (Hashim et al. 2010; Kamali et al. 2010; Bilkovic
and Mitchell 2013).

Vertical and sloping seawalls (supplementary
information Table 2)

Options for eco-engineering seawalls include drilling pits into
pre-existing seawalls (Martins et al. 2010; Martins et al.
2016), manipulating wet mortar to create grooves and pits in
new seawalls (Firth et al. 2014; Jackson 2015) and
transplanting target species or species of conservation concern
directly onto seawalls (Ng et al. 2015). Structural complexity
can be added by attaching concrete panels to seawalls (Cordell
et al. 2017; Perkol-Finkel et al. 2017; Strain et al. 2017b;
World Harbour Project 2018), and water-retaining features
can be created by retro-fitting precast concrete units on sea-
walls or replacing blocks with cavities during seawall con-
struction (Chapman and Blockley 2009; Browne and
Chapman 2014; Morris et al. 2018b; Hall et al. 2019).

Over-water structures, such as bridges and piers,
and their associated supporting pilings
(supplementary information Table 3)

Over-water structures and their associated foundational sup-
port structures may alter natural physical characteristics, such
as hydrodynamics, sediment movement and light penetration
in the immediate area (Smith and Mezich 1999; Shafer 2002;
Dugan et al. 2011; Li et al. 2014). These physical modifica-
tions result in changes to ecosystem functioning, including
fish migration behaviour (Ono and Simenstad 2014; Munsch
et al. 2017) and seagrass survival (Blanton et al. 2002; Shafer
2002). To alleviate some of the negative effects associated
with over-water structures, ecologists have experimented with
light-penetrating materials (Shafer and Lundin 1999;
Alexander 2012; Cordell et al. 2017) and artificial lighting

(Ono and Simenstad 2014). Ecological encasement jackets
(Perkol-Finkel and Sella 2015) and synthetic free-hanging
ropes (Paalvast et al. 2012) have been trialled on pier pilings,
which had positive effects on biodiversity and local water
quality through biofiltration, and without compromising the
functional integrity of pilings.

Tidal river walls and embankments (supplementary
information Table 4)

Tidal rivers and estuaries are among the most degraded and
altered aquatic ecosystems in the world as many are located in
urban areas (Malmgqvist and Rundle 2002; Lotze et al. 2006),
yet there has been a paucity of eco-engineering interventions
attempted in these systems (but see Francis et al. 2008; Francis
2009; Hoggart and Francis 2014). Eco-engineering options
for tidal river walls include attachment of timber fenders, wall
modules and wire mesh to river walls. These can act as surface
roughness elements, reducing water flow velocity and facili-
tating seed trapping and germination of vegetation (Steele
1999; Schanze et al. 2004; Hoggart and Francis 2014). The
use of floating structures such as fish hotels is not a direct
enhancement to an artificial structure, but such designs do
facilitate recruitment of riparian vegetation and invertebrate
species, as well as provide shelter and habitat for fish and
haul-out sites for seals (Francis 2009; Yellin 2014).

Vulnerable, degraded and culturally valuable artificial
structures on which manipulations are not permitted

Some artificial structures are degraded or have cultural or
heritage value, which can make it challenging to obtain per-
missions for retrofitting eco-engineering interventions, espe-
cially interventions that involve drilling or attaching heavy
materials. For example, Plymouth Breakwater, built between
1812 and 1841, is a 1.6 km long structure (Southward and
Orton 1954; Hawkins et al. 1983) that is considered a historic
monument (Knights et al. 2016) and that is not permitted to be
manipulated. As the original structure has become
undermined over the years, sacrificial concrete wave-breaker
blocks (100 t) are systematically placed on the seaward side of
the breakwater as an additional form of protection from wave
action. These blocks may function similarly to boulders or
rubble placed at the base of seawalls, in that they create addi-
tional habitat that supports species that do not live on the
original structure itself (Chapman 2012, 2017; Firth et al.
2014; Liversage and Chapman 2018). Indeed, given their her-
itage status and aesthetic value of these kinds of structures, the
best approach may be to do nothing.

To our knowledge, formal tests to enhance biodiversity on
vulnerable structures have not been conducted, thus informa-
tion contained within this section consists only of suggested
interventions, and subsequently a guidance table on eco-
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engineering approaches has not been offered. Nevertheless,
designs that have been trialled for other structures have the
potential to be implemented in front of vulnerable structures
for protection and provision of habitat for marine life. For
example, if the goal is to provide a secondary form of protec-
tion for the structure and enhance the habitat potential, artifi-
cial boulder fields (Chapman 2012, 2017) or precast
armouring units (Firth et al. 2014; Sella and Perkol-Finkel
2015; Reef Ball Foundation Inc. 2017; ARC Marine 2019)
could be placed in front of the structure. There are companies
designing commercial products to provide hard structures for
erosion prevention and scour protection, whilst simultaneous-
ly enhancing biodiversity (Reef Ball Foundation Inc. 2017,
ARC Marine 2019; ECOncrete Inc. 2019; Reef Design Lab
2019). It is imperative, however, to confirm that designs from
these companies are rigorously tested, analysed and results
published so that there is confidence in the delivery of ecolog-
ical goals (e.g., see scientific testing done by ECOncrete Inc.
2019: Perkol-Finkel and Sella 2013; Perkol-Finkel and Sella
2015; Sella and Perkol-Finkel 2015; Perkol-Finkel et al.
2017).

Floating pontoons

Floating pontoons (also known as floating docks) are some of
the most ubiquitous artificial structures in urban harbours.
They are hollow structures made of materials such as concrete
or fibreglass which are used as walkways and for berthing
boats; they also inevitably provide substrate for biotic coloni-
sation (Connell 2001; Toh et al. 2017). There are no natural
analogues to pontoons, as they stay fixed in relation to the
water level (they rise and fall with the tide so that the water
depth below them varies), provide permanent shading and are
typically located within enclosed environments (i.e., marinas;
Hair and Bell 1992; Glasby and Connell 2001; Holloway and
Connell 2002).

To date, descriptive work on pontoons has characterised the
biological assemblages and has shown that these structures often
support invasive species (Arenas et al. 2006a; Perkol-Finkel et al.
2008; Bishop et al. 2015; Toh et al. 2017), although few eco-
engineering studies have been carried out on pontoons (but see
Hair and Bell 1992; Stachowicz et al. 2002; Paalvast et al. 2012).
This knowledge gap is reflected in the absence of a guidance
table on eco-engineering approaches to pontoons in this paper.
It is important to note that eco-engineering pontoons may be
undesirable for marina operators because additional material on
pontoons may affect buoyancy of pontoons and impede mooring
of boats, and the associated organisms typically cover boat hulls
and marina equipment (Connell 2001). In particular, invasive
species (e.g., the carpet sea squirt, Didemnum vexillum) have
been responsible for smothering pontoons, marina equipment
and boat hulls and engines, costing marina managers and boat
owners extra expenses in anti-fouling remedies (Coutts and
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Forrest 2007; Piola et al. 2009). Thus, trials are urgently needed
to test eco-engineering interventions that will support native bio-
diversity, thereby offsetting the success of invasive species.

Concluding remarks

As urbanisation along coastlines continues to increase, the
pressure on coastal developers and local governments to in-
vest in the design and management of defence structures to
protect valuable infrastructure and preserve human lives will
also increase. Stress from urbanisation will be exacerbated by
rising sea level and more frequent and intense storms.
Fortunately, there is impetus among stakeholders to work with
natural processes where possible to preserve biodiversity and
maintain valuable ecosystem services (Evans et al. 2017).
Effective siting, planning and management of coastal devel-
opments to provide desirable ecological benefits to society
and nature require a wide range of proof-of-concept options
in a variety of environmental contexts. This paper has shown
the range of eco-engineering options currently available, as
well as provided a template upon which to build a
practitioner-friendly user guide for environmentally sensitive
development along urbanised coastlines.

The future of eco-engineering will necessarily include a
wider ecosystem perspective; this will include combining
“hard” and “soft” engineering (Bilkovic and Mitchell 2013;
Temmerman et al. 2013; Hanley et al. 2014; Chee et al. 2017),
and will involve a multifunctional approach to design struc-
tures that can synergistically support aquaculture, energy pro-
duction, diverse biological communities and healthy ecosys-
tems (Ten Voorde et al. 2009; Zanuttigh et al. 2015; Evans
et al. 2017). Ecologists and engineers have developed a wide
range of eco-engineering options and are beginning to develop
frameworks and guidelines for end-users (Dafforn et al.
2015b; Dyson and Yocom 2015; Mayer-Pinto et al. 2017);
but we caution that significant knowledge gaps remain regard-
ing the applicability of these techniques outside the environ-
mental scenarios in which they were trialled, and all designs
carry with them an associated risk. As Bulleri and Chapman
(2010) warned, it is not yet possible to provide a full “recipe
book” of interventions from which engineers and developers
may select the best approach with absolute confidence to pos-
sible outcomes (see also Evans et al. 2017). Thus, to inform
sound eco-engineering practice, there is a need for wider test-
ing of existing designs in different environmental settings, and
to develop the predictive capability to forecast ecological out-
comes (Airoldi et al. 2005; Hulme 2014; Evans 2016).
Meticulous planning, informed decision-making and setting
and measuring secondary management goals are vital in
maximising the ecological and societal benefits of eco-
engineering (Russell et al. 1983; Hawkins et al. 1992).
Collaboration between developers, government bodies, ecol-
ogists and engineers is an essential prerequisite for
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maximising biodiversity gains and minimising ecological im-
pacts of coastal development (Department for Communities
and Local Government 2012).

The field of eco-engineering is still in its infancy; public
and practitioner knowledge of eco-engineering may be limited
due to lack of awareness (Strain et al. 2019). Ecologists
should, therefore, communicate eco-engineering information
to managers, decision-makers and the general public in a va-
riety of different formats that will reach a diverse audience,
such as integrating environmental education into school cur-
ricula (Strain et al. 2019) and children’s media (e.g., Firth et al.
2016c), gaining corporate sponsorship (e.g., Living Seawalls
2019) and presenting at Soapbox Science events (Soapbox
Science 2019). Eco-engineering information should be com-
municated without exaggeration or promise of desired results,
with a foundational message that the best option for managing
biodiversity and ecosystem functioning is to minimise inter-
ventions and work with nature whenever possible (e.g., sand
banks, saltmarshes, mangroves; Airoldi et al. 2005; Hanley
et al. 2014; Morris et al. 2018a).

Arguably more is learnt from failure than from success
(see Firth et al. 2016b), and we advocate that reporting of
failure is imperative. Reflecting the restricted distribution
of eco-engineering trials grouped in a few geographical
hotspots (i.e., Australia, Italy, Singapore, UK, USA; Firth
et al. 2016a; Strain et al. 2017a) and limited types of struc-
tures studied (i.e., limited research on pontoons, offshore
structures), we caution against unconsidered implementa-
tion of these recommendations without full consideration
of the environmental context (see Table 2), overall man-
agement goals and desired target effects. With careful plan-
ning and consultation with the appropriate team of experts
— local ecologists, engineers and societal stakeholders —
even heavily stressed coastal urban ecosystems can support
greater biodiversity, enhancing functioning, thereby pro-
viding valuable ecosystem services for both nature and
society.
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